dimanche 1 mai 2016

Initiation aux Probabilités et aux chaînes de Markov - Pierre Brémaud


Initiation aux Probabilités et aux chaînes de Markov - Pierre Brémaud



Cette introduction aux concepts probabilistes et au calcul des probabilités s'adresse aux élèves-ingénieurs ou aux étudiants qui ne se destinent pas a priori à une carrière en mathématiques. 
La présentation, bien qu'utilisant le formalisme moderne, ne fait donc pas appel à une connaissance préalable de la Théorie de la Mesure et de l'Intégration. 
En revanche, l'auteur insiste tout au long du livre sur l'aspect essentiel de la modélisation, à l'aide d'exercices variés en génétique (processus de branchement) en théorie des communications (transmission de données, codage), en théorie du signal (filtre de Kalman-Bucy), en recherche opérationnelle (files d'attente) en statistique (tests d'hypothèses), etc. Une dernière caractéristique importante de ce livre est la présence d'une centaine d'exercices avec solutions détaillées


Ce cours, qui s?adresse aux étudiants des universités et des grandes écoles, donne les éléments de la théorie des probabilités utiles à la compréhension des modèles probabilistes de leurs spécialités respectives, ainsi que la pratique du calcul des probabilités nécessaire à l?exploitation de ces modèles.

Cette initiation aux probabilités comporte trois degrés: le calcul des probabilités, la théorie des probabilités, les chaînes de Markov.

La première partie du cours introduit les notions essentielles: événements, probabilité, variable aléatoire, probabilité conditionnelle, indépendance. L?accent est mis sur les outils de base (fonction génératrice, fonction caractéristique) et le calcul des probabilités (règles de Bayes, changement de variable, calcul sur les matrices de covariance et les vecteurs gaussiens). Un court chapitre est consacré à la notion d?entropie et à sa signification en théorie des communications et en physique statistique. Le seul prérequis pour cette première étape est une connaissance pratique des séries, de l?intégrale de Riemann et de l?algèbre matricielle.

La deuxième partie concerne la théorie des probabilités proprement dite. Elle débute par un résumé motivé des résultats de la théorie de l?intégration de Lebesgue, qui fournit le cadre mathématique de la théorie axiomatique des probabilités et précise les points techniques laissés provisoirement dans l?ombre dans la première partie. Puis vient un chapitre où sont étudiées les différentes notions de convergence, et dans lequel sont présentés les deux sommets de la théorie, la loi forte des grands nombres et le théorème de la limite gaussienne.

Le chapitre final, qui constitue à lui seul la troisième étape de l?initiation, traite des chaînes de Markov, la plus importante classe de processus stochastiques pour les applications. En fin de chaque chapitre se trouve une section d?exercices, la plupart corrigés, sauf ceux marqués d?un astérisque.

Aucun commentaire:

Enregistrer un commentaire